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1. INTRODUCTION. The linear model is often 

expressed as y = Xß + e where y is an n 1 

vector of observations, X is an n X p matrix 
of k n o w n real constants, is a p l vector 

of unknown parameters and e is an n X 1 vector 
of errors with E(e) , the null vector, and 
with variance matrix V = E(ee'). 

Let denote the simple least 
squares estimator of Xß and BLUE(Xß) the 
minimum variance linear unbiased estimator of Xß. 

This later can be expressed as X(X'V X) X'V y 
whenever the range space of V contains the 
range space of X, Mitra & Rao (1968). 

Durbin and Watson (1950) and Watson (1955) 

are among the first to lay ground work for com- 
paring the performance of the simple least 
squares estimators with respect to the correspond- 
ing minimum variance linear unbiased estimators. 
Watson (1955) defined the efficiency of SLSE(XB) 

to be 2 /IX'VXIIX'V -XI. As this expression 
is the ratio of the generalized variances of 
SLSE(XB) and BLUE(Xß) respectively when X'X 
and V are invertible, it has considerable appeal. 

When X'X or V are not invertible, certain 
difficulties arise. 

Magness and McGuire (1962), considering X'X 
and V invertible, establish relationships more 
along the lines of this paper, i.e. Xmin 

Var[BLUE(Xß)] < Var[SLSE(Xß)] < X and 

Var[SLSE(t'XB)] + + 
)Var[BLUE(t'Xß)] /4 where 

Xmin 
and 

X 

are respectively the smallest and largest eigen- 
values of V. 

Golub (1963) extended the results of Magness 
and McGuire by using an inequality due to Schopf 
assuming invertibility of X'X and V. 

Rizzuto et. al. give an attainable efficiency 
defined as the same generalized variance ratio for 
the covariance structure (1 - p)I + pJ. However, 
the bound of these authors appears to be attain- 
able in the sense that for a particular covariance 
matrix there exists a design matrix for which 
their bound is attained. 

Notationally, let A be any matrix. Then 
Ç(A) and are respectively the column and 

row spaces of A. Likewise, (A) and Ó{1(A) 

are respectively the orthogonal complements of 
and RCA). The usual expectation and 

variance operators are E() and Var(*). 
Finally, A will denote any generalized inverse 

of A and A+ will be the Moore- Penrose pseudo- 
inverse of A. 

2. GENERAL APPROACH. Let us define the 
efficiency as 
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min Var[BLUE(tXß)] Eff(SLSE(Xß)) (1) 
Var[SLSE(t Xß)] 

Two bounds, one being exact, will be given 
for this definition of efficiency under the 

constraint (¡(V) (X). The meaning of exact is 
in the sense that the bound is attainable for 

whatever specific design matrix X is chosen. 

Lemma 1: Eff(SLSE(Xß)) 

z'X'V+X(X'X) X'V+Xz 

where z is such that t'X 

Such a z exists because +) 

Defining the denominator of (2) to be f'f, then 

0 < 1/ Max f'f < Eff(SLSE(XB)) < 

=1 

1/ min f'f < 1 

-1 

Via (2), the lower bound of the efficiency is 
seen to be attainable. 

3. AN INEXACT LOWER BOUND. 

THEOREM 1: In the model - Xß + e, E(e) 

Var(e) - V with 

Eff(SLSE(Xß)) > 

smallest nonzero scalar h: X'VXt = hX'Xt 

largest scalar h: X'VXt hX'Xt 

This bound is, in general, not attainable for any 
choice of X. 

It can be shown that the largest eigenvalue 
of any symmetric positive semidefinite matrix A 
must, for all choices of X, exceed the largest 
scalar h such that X'AXz hX'Xz. Also the 
smallest nonzero eigenvalue of A is smaller than 
or equal to the smallest h satisfying this 
expression. Thus via the use of h, the relation- 
ship, using appropriate normalized parametric 
functionals, 

X in 
< Var[BLUE(t'XB)] < 

Var(SLSE(t'Xß)] < < 
Amax 

provides a tightening of one of the bounds of 
Magness and McGuire. 

4. AN EXACT LOWER BOUND. 

A second approach to efficiency bounds is to 



attempt to study directly 

the constraint z'X'V 
the covariance matrix 

form V = (P I R I C) 

Q are diagonal matrices. 

1 /Max 

+Xz = 1. 
V be 

I N 

J 0 0 Q 
The 

subject to 

To this end, let 
expressed in the 

R') where M, N, 

C' 
columns of P 

form a complete set of orthonormal eigenvectors 
of V which lie in 44). The columns of C 

form a complete set of orthonormal eigenvectors 
of V which lie in The columns of R 
are a complete set of the remaining orthonormal 
eigenvectors which are also orthogonal to 
and a(C). 

All estimable parametric functionals can be 
expressed in the form t'Xß. It is interesting 
that there exists a subspace of R(X) from 
which must come those t'X for which 
Eff(SLSE(Xß)) is attained. 

THEOREM 2: In the model y Xß + e, E(e) 
E(ee') = V, c(V)íX), P, R, C as previously 
defined, Eff(SLSE(Xß)) is attained for some 
parametric functional if and only if 
t'X E a(X' R) . 

The particular case where dim 47(X) - 

dim a(P) 1 has particular interest in that an 
attainable lower bound for Eff(SLSE(X8)) has a 
mathematical simplicity that seems otherwise 
lacking. 

THEOREM 3: In the model Xß + e, E(e) 0, 

E(ee') = V with and dim ¿(X) - 
(p(P) = 1, let r be any vector in G(R) having 
that direction such that '(P) e 4(r). 
Let {cos i 1,,k} be the set of direc- 
tional cosines of the column vectors of R with 
respect to r and X, the corresponding eigen- 
values of V. Then Eff(SLSE(X8)) 

=1 i cos2ai)(Li cos2a1] -1. 

It should be noted that the smallest value 
of dim C(R) is 2 whenever not all simple 
least squares estimators are best. This provides 
a setting for the following corollary. 

COROLLARY: If under the conditions of Theorem 3, 
dim L°(R) = 2, let cos 6 be the directional 
cosine of one of the two column vectors of R, 
and X are the two corresponding eigen- 

values, then for fixed d, Eff(SLSE(Xß)) is 
strictly decreasing as X 

max 
- X 

min 
increases. 

For fixed Eff(SLSE(Xß)) is strictly 

decreasing as - 45 decreases. 

THEOREM 4: In the model y Xß + e, E(e) 0, 
E(ee') = V, let 4(V) =DÇ(X). Let P, R, C be 
as previously defined. Let X2 have linearly 

independent column vectors such that 
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((X) = with dim a(X2) > 1. Let 

be any matrix Where the column vector is a 

set of directional cosines of the ith column 
vector of X2 with respect to the matrix 

(PICRIC). Let W be any matrix satisfying 

(W') Ç (p). Then Eff(SLSE(XB)) = 

[(z'L +z)(z'Lz)] where L is diagonal such 
that V = (PIRIC)L(PIRIC)' and z is any one of 
the solutions to Wz = 0, = 1, 

[(z'L+z)*'LL 2(z'Lz)(z'L+z)*'L + (z'Lz)*']z 

COROLLARY: Under the conditions of Theorem 4, if 

the directional cosines of the matrix are not 

considered, then Eff(SLSE(Xß)) > 4 + ) 

(Xmin 
+ where 

Xmin 
and are the 

smallest and largest eigenvalues of V with 
respect to the column vectors of R. 

Here again the bounds for Eff(SLSE(Xß)) of 

the preceding corollary are at least as close as 
those of Magness and McGuire since the maximum 
and minimum eigenvalues of the corollary are taken 
from a subset of all the eigenvalues of V. 
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